Los llamados artistas matemáticos del Renacimiento manifestaron gran interés por los poliedros, propiciado, por una parte, por los estudios platónicos sugeridos por la reaparición de ciertos manuscritos con las obras de Platón, y por otra, debido a que estos sólidos servían como excelentes modelos en los estudios sobre Perspectiva (Pedoe, 1979).
El estudio más completo fue realizado hacia 1480 por Piero della Francesca en su obra Libellus De Quinque Corporibus Regularibus. Aparte de los tópicos euclídeos sobre poliedros, en esta obra se redescubren gradualmente los llamados sólidos arquimedianos o poliedros semirregulares. Son trece cuerpos igualmente inscriptibles en una esfera con caras polígonas regulares de dos o tres tipos, siendo iguales los polígonos que resultan de unir puntos medios de aristas que concurren en un vértice. Pappus de Alejandría (1982), que atribuye su invención a Arquímedes, da una descripción de estos sólidos en el apartado V.19 de su obra La Colección Matemática e indica, además, para cada sólido, el número de caras, aristas y vértices.
Piero della Francesca fue un experto en relacionar los diversos poliedros; obtuvo unos a partir de otros y los inscribió sucesivamente. De ellas la más elemental es la llamada dualidad o reciprocidad poliédrica según la cual «el sólido cuyos vértices son los centros de las caras de uno platónico también es platónico» y también «el sólido determinado por los planos tangentes en los vértices a la esfera circunscrita a un sólido platónico también es platónico». Un poliedro y su dual tienen el mismo número de lados y el número de caras de uno es igual al número de vértices del otro.
Los cinco poliedros regulares se clasifican por dualidad en tres grupos: tetraedro que es dual de sí mismo, cubo-octaedro (el dual del cubo es el octaedro y viceversa) e icosaedro-dodecaedro (el dual del icosaedro es el dodecaedro y viceversa) según muestran las iguientes figuras:
Pi
y por que la calabaza no entendí cual es la razón
ResponderEliminarX2
EliminarNomames
ResponderEliminar